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Disclaimer

This file gathers all the exercises did in class as of 2023-2024 course program. Hope this can be useful
to immediately see the exercises, the categories and can be used as a file to study for the exam
directly.
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2 GRAPHS

2.1 PROPERTIES OF GRAPHS

Let G = (V,E) be a simple, connected graph with n vertices and m edges. Then:

1) Yvevd(v) =2m

2 m<(})

3) Gisatree=>m=n—1

4) Gisconnected=>m=n-—1

5) G isacyclic(i.e.,isaforestt=>m<n-—1

Prove the previous properties.
Solution
1) Inthe summation, every edge is counted exactly twice
2) Inasimple graph, there are (}) possible pairs of vertices
3) Fixarooton avertex (so, consider G as rooted tree, thanks to the equivalence between rooted
tree and “free” tree). Then E represent father-child relationships, which are n — 1 (which
means each non-root node has a unique father)
4) G is atreethat may have cycles = it can only have more edges than a tree
a. Consider connectivity removes edges and keeps the graph connected without cycles,

thanks ton — 1 edges

5) G is atree that may not be connected = it can only have less edges than a tree
a. Ifitis atree withoutcycles, itis aforest, and its maximum edgesaren — 1

2.2 DFS EXERCISES

1) Given a graph G and two vertices s, t determine, if it exists, a path from s tov
2) Given agraph G return a cycle (if any)

Solution

e 1exercise (s — t path)
o Vv €V addafield Ly [v].parent
o Modify DFS(G,v) s.t. when a DISCOVERY EDGE (v,w) is labeled
» thenLy[w].parent = v
o RunDFS(G,s).Checkift has been visited
= NO:thenreturn “No path”
= YES: starting from t, follow the “parent” label, so as to build a path from tto s
o Complexity: O(mg) where my is the number of edges of s connected component
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e 2" exercise (cycle) 2 we go back thanks to back edges because they “close” the cycles
o Vv €V addafield L, [v].parent and Ve € E add a field Lg[e]. ancestor
o (v,w)isaDISCOVERY EDGE then Ly[w].parent = v
o (v,w)isaBACK EDGE then Lg[e].ancestor = w
= thenw is anancestor of v inthe DFS tree
Run DFS on each connected component
Check all the edges
* assoonasanedgee = (v,w)isfoundas BACK EDGE
* andLgle].ancestor = w
= thenreturn a cycle adding to e all the edges found in the path from v tow
= ifno BACK EDGE is found, then return “No Cycles” (it would be a tree)

Complexity for both algorithms: 8(n + m) - invoked DFS once for each connected component

2.3 UNIQUENESS OF MSTs

Exercise (uniqueness of MSTs):
Show that if the weights of the edges are all distinct then there exists exactly one MST.
(Hint: cut and paste argument — similar to the theorem correctness)

Solution (with details of lesson but also other including Wikipedia and other sources)

C

f—

DL

Assume there are two MST different from each other, so the contrary and so A #+# B = 3 an edge in one
but not in the other; since weights are distinct, 3! with min weight, call it e;, without loss of generality
(notintroducing any artificial assumption), e; € A and the argument is a cut-and-paste one (this
choice will be unique, considering edge weights are all distinct from each other):

- adde; to B = thiscreatesacycle C; Ais (M)ST= nocycles= C hasanedgee, ¢ A
= w(ey) > w(ep)
o because e; was chosen as the unique lowest-weight edge (only edge with minimum
weight not in the other) among those belonging to exactly one of A and B
o therefore the weight of e, must be greater than the weight of ¢;
- remove e, from B = get a new spanning tree with weight < w(B) (so, smaller weight):
contradiction, because B is an MST!

Two conclusions can be done:

- more generally, if the edge weights are not all distinct then only the (multi-)set of weights in
minimum spanning trees is certain to be unique; it is the same for all minimum spanning trees
- when the edge weights are not all distinct, it's possible for multiple different MSTs to exist
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o however, while the actual arrangement of edges in these MSTs may vary, the set of
weights of the edges across all MSTs will remain the same
- conversely, if weights are not all distinct, generally multiple MSTs can exist

Other exercises

1) Is the converse true? (e.g., are weights necessarily unique for every possible graph and this has
to hold for every graph)

Solution
No: think of G as a tree (literally only thing professor will write — lame, | know, | added more).

A connected graph with repeated edge weights and this can still have a unique minimum spanning
tree. Considered the trivial example of G being a tree; in this case, there are no cycles, so any
spanning tree will be minimal, hence unique, regardless of repeated edge weights.

In conclusion, we might say:

- Distinct weights guarantee a unique MST
- Repeated weights can have multiple MSTs
o but the set of weights used will always be the same across all of them

2) Show that the second best MST, that is, the spanning tree of second-smallest total weight, is
not necessarily unique (here we look for only one graph)
Solution

There will be a unique MST, but for the second best, according to where the cut will be displaced,
there will definitely be more than one, given the cut can be done on more than two edges at a time.
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If you want a complete formal explanation, see the book solution to this exercise here (look for
problem B in the link).
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2.4 KRuUskAL UNION-FIND

Argue that the complexity of Find(x) (and of Union(x,y)) is 0(log(n)).
Solution

Initially, depth(x) = 0 Vx. depth(x) can only increase because of a Union in which the root of the tree
of x points to another root (depth increases by 1 by construction). This happens only when the tree of
x gets merged to a tree of size not smaller (at least as big) = when the depth of x increases, the size of
the tree of x at least doubles.

- How many times can this happen?
o < log,ntimes (at most)
= therefore the depth of x cannot increase more than log, n times

So, we have two different algorithms with complexity O(mlog(n)). O(m) is still an open problem.

2.5 DuKSTRAWITH HEAPS

Write an implementation of Dijkstra’s algorithm with heaps.

Solution
procedure Dijkstra(G,s) (almost identical to Prim’s implementation with heaps)
X ={s}

H = @ //initialize heap
key(s) = 0 // initialize key of source vertex
foreach v # s:do // iterate for all vertices
/W]J key(v) = oo
foreach v € V:do // insert inside min heap
insert vinto H
while H is non — empty: do // check inside all of the heap
w* = extractMin(H)
add w* to X
len(w*) = key(w™)
// Update the heap
for each edge (W*,y) s.t.y € X:do
deletey from H
key(y) = min {key(y), len(w*) + w(v*,w*)}

insert y into H

Written by Gabriel R.



8 Advanced Algorithms Exercises Swiss Knife

(This algorithm gives only the length of the path, but it’s not difficult to also insert the actual path
inside of this one)

Complexity:

- considering graph as adjacency list, n vertices and m edges
- log(n) iterations because of heap usage

Total number of operations: 0((n + m) log(n) (there are O(m + n) operations on heaps)

2.6 EULERIAN CIRCUITIN LINEAR TIME

Problem:

Given an undirected graph, an eulerian circuit is a cycle that traverses all the edges only once.
Show it can be solved in linear time.

Solution

To solve the problem of finding an Eulerian circuit in an undirected graph in linear time, we can use the
following algorithm:

1. Checkifthe graph is connected and has at most two vertices with odd degrees. If there are
more than two vertices with odd degrees, then an Eulerian circuit cannot exist.

2. Ifthere are exactly two vertices with odd degrees, start the Eulerian circuit at one of them.
Otherwise, start from any vertex.

3. Traverse the graph using the following strategy:
e Ateach vertex, choose an unvisited edge (if one exists) and traverse it.
e |fthere are no unvisited edges at the current vertex, backtrack to the previous vertex.

4. Ifyou can traverse all the edges and end up at the starting vertex, then an Eulerian circuit
exists. Otherwise, an Eulerian circuit does not exist.

This algorithm works in linear time because it visits each edge exactly twice (once during the traversal
and once during backtracking) and performs constant-time operations at each vertex. Therefore, the
time complexity is O(V + E), where V is the number of vertices and E is the number of edges in the
graph.

There is an existing algorithm doing this done by Hierholzer, which showed the sufficient condition in
Euler theorem, which states “a graph is connected if an only if has all nodes of even degree or if it has
exactly two nodes of even degree”. It works for both directed and undirected graphs and works as
follows:
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Preconditions:

- Allvertices in the graph must have even degrees

Steps:

- Start at any vertex (each one can be a starting point) and follow a trail of edges until returning
to the starting vertex. This forms a partial circuit

- If the partial circuit covers all edges, the algorithm is complete. Otherwise, select any vertexin
the current circuit that has unused edges and start a new circuit from that vertex, merging it
into the previous circuit

- Repeat step 2 until all edges have been used
a. Atsome point, we will visit a vertex and there will be no edges to follow

b. Remember that Eulerian Cycle properties, every vertex should have even degrees or
equal in-out degrees

c. Ifwe are stuck the first time it means that we formed a cycle, and the vertex that we are
stuck on is the starting vertex. This means we returned where we started.

- The algorithm terminates when a complete Euler circuit is formed, where each edge is

traversed exactly once, backtracking from the whole stack and holding complete knowledge of
the structure

Hierholzer's algorithm has a linear runtime, making it an efficient method for finding an Euler circuit in
a graph that meets the necessary requirements.
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3 NP-HARDNESS

Proving Correctness of Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Iy is YES <= Iy is YES.

@ typical easy direction to prove: answer to ly is YES if answer to Ix is YES
@ typical difficult direction to prove: answer to Ix is YES if answer to ly is YES
(equivalently answer to Ix is NO if answer to ly is NO).

@ Runs in polynomial time.

3.1 CLIQUEISNP-HARD

- (Maximum) Cligue: compute the longest complete subgraph
a. other name for a complete graph (from now on, the problem will be called Clique)
b. below, a useful figure to clearly see the problem

Show that Clique is NP-Hard.

KRN

nota cligue non-maximal clique maximal clique maximal cligue

Solution (a nice graphical explanation here)
Decision version:

- Input:< G = ((V,E), k>
- Output: 3in G aclique of size k?

We operate a reduction from Maximum Independent Set (Ham. circuitisnot
really related to it; as you can see here, one can use 3SAT in order to show

Cligue is NP-complete). Figure here shows Independent Set.

- Intuition
a. clique: vertices with all edges between them
b. maximum independent set: vertices with no edges between them

- Definition

a. givenagraph G = (V,E), its edge-complement G = (V, E) has the same vertex V and

an edge set E such that (u, v) € E © (u,v) € E (so, no common edges)
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- Observation
a. asetofvertices Sisindependentin G & Sisa cliquein G = the largest independent

setin G has the same size as the largest clique in G

To make it super complete, let’s draw the schema of what we are doing — takes O(nz) time, givemn the
constant work needed to traverse all edges and vertices:

Hw( L‘l S{—i'

3.2 VERTEX COVERIS NP-HARD

- (Minimum) Vertex Cover: compute the smallest vertex in a given graph
a. From now on, only called Vertex Cover

Show that Vertex Cover is NP-Hard.
Solution (once again, a nice graphical explanation of this one here)
Decision version:

- Input:< G =(V,E), k>
- Output: 3 in G avertex cover of size k?

We operate a reduction from Maximum Independent Set (once again, this is the most similar problem
to the one we are proving)

- Observation
a. asetofvertices Sisindependentin G & V \ Sis avertex cover of G
i. inbluethereisanindependent set (actually the biggest one)
ii. the otherones are the vertex cover

\/,a)fm i

chl‘ /)Xjr

= the longest independent setin G has size n — k, where k is the size of the smallest
vertex cover of G

Independent set:

- Input:<G=W,E),n—k >
- Output: 3in G anindependent set of size n — k?
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Once again, let’s represent this in a complete way:

LJ. Si

3.3 MORE REDUCTIONS CAN BE MADE

Exercise

- Showthat:
a. Vertex Cover <, Independent Set
b. Clique <, Vertex Cover

= these 3 problems are equivalent.

Solution (official = shorter)

“same” as Independent Set <,, Vertex Cover

- we can consider the following figure for this one
a. consider a clique of size 4 in the middle (left)
b. if youtake the complement of this one (right)

- Ghasacliqueofsizek G has a vertex over of size n — k
a. proof: see the book (8 - p. 1106 of 4™ edition —theorem 34.12)

B <>

Solution (longer and better explained)

a. Suppose that we have an efficient algorithm for solving Independent Set, it can simply be used
to decide whether G has a vertex cover of size at most k, by asking it to determine whether G
has an independent set of size atleastn - k

Given an instance of the Vertex Cover problem, consisting of a graph G = (V, E) and an integer k
representing the size, we construct an instance of the Independent Set problem as follows:

1. LetG' =G (i.e., the graph for the Independent Set instance is the same as the original graph
G).

2. Letk'=|V|—k(i.e., the target size of the independent set is the number of vertices in G minus
the size of the vertex cover k).

To show that this reduction is correct, we need to prove the following:
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1. If G has a vertex cover of size < k, then G’ has an independent set of size > k'.
2. If G' has an independent set of size = k', then G has a vertex cover of size < k.
Let’s prove both (1) and (2):

- Suppose C is avertex cover of size < k in G. Then, the setV \ C is an independent setin
G' (since C covers all the edges, no two vertices in V' \ C can be adjacent). Furthermore,
[V\C| =2 |V|-k=k

- Suppose Sis anindependent set of size > k' in G'. Then, the set V' \ S is a vertex coverin G
(since S is independent, every edge must have at least one endpointin V '\ S). Furthermore,
[V\S| < |V|-k'=k.

b. Toshow that Clique <, Vertex Cover, we need to provide a polynomial-time reduction from
the Clique problem to the Vertex Cover problem. Here's one way to construct the reduction:

Given an instance of the Clique problem, consisting of a graph G = (V, E) and an integer k, we
construct an instance of the Vertex Cover problem as follows:

1. LetG' = G (i.e., the graph for the Vertex Cover instance is the same as the original graph G).

2. Letk' =|V| — k (i.e., the target size of the vertex cover is the number of vertices in G minus the
size of the clique k).

To show that this reduction is correct, we need to prove the following:
1. If G has aclique of size > k, then G’ has a vertex cover of size < k'.
2. If G' has avertex cover of size < k', then G has a clique of size = k.

Proof of (1): Suppose C is a clique of size = k in G. Then, the set V' \ C is a vertex cover in G’ (since C is
a clique, every edge must have at least one endpointin V '\ C). Furthermore, [V\ C| < |V| -k =k'.

Proof of (2): Suppose S is a vertex cover of size < k' in G'. Then, the set V' \ Sis a clique in G (since S is
a vertex cover, every edge must have both endpointsin V \ S, which means V' \ S is a clique).
Furthermore, |V \ S| = |V| - k' = k.
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4 APPROXIMATION ALGORITHMS

4.1 LoweR BoOUND FOR VERTEX COVER GREEDY ALGORITHM

Very first algorithm you can think of? Use a greedy approach:

- selectthe vertex for the highest degree
“remove” the touched edges
- repeat

Exercise: show a LB on p(n) for this algorithm — the higher, the better (log (n) is difficult)
(Hint: try to prove the best you can — it should be a constant factor)

Solution

One possible idea is the following:

- take around of vertices
- consider levels of vertices adding more

We call this problem: “degree-based greedy approximation for vertex cover”. Consider the following:

This image demonstrates a general idea for constructing a "bad" input instance to show a lower bound
on the approximation ratio. The approach is to create a graph with multiple levels, where each level
has more vertices than the previous level, but with fewer edges connecting to the next level.

The reasoning goes like this:

e Start with a single vertex (labeled "Greedy" in the image)

e Atthe next level, add a few vertices that are all connected to the first vertex

e Atthe next level, add more vertices that are only connected to the previous level vertices

e Continue adding more and more vertices at each level, with fewer connections to the previous
level

The idea is that the greedy algorithm will pick all the vertices in the first level, then all the vertices in
the second level, and so on, resulting in a large vertex cover. However, the optimal vertex cover would
be to pick the intermediate level vertices, which can cover all the edges with fewer vertices.
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The greedy algorithm, by design, will select the vertex with the highest degree at each step. This
means:

o It will select the single vertex at the first level.

e Then, itwill select allg + 2 vertices at the second level (since they have the highest degree at
that point).

o Next, itwill select allg + 2 vertices at the third level (since they are now the highest degree

vertices remaining).
Therefore, the total size of the vertex cover produced by the greedy algorithm is: 1 + (g + 2) +
(F+2)-2+s
However, the optimal vertex cover for this graph is to select the g + 2 vertices at the second level. This

covers all edges in the graph using onlyg + 2 vertices.

By comparing the greedy solution size (%n + 5) to the optimal solution size (2 + 2), we getan

approximation ratio of:
2n n
p=(5+5)/ G +2) = 2 (for large values of n)

The following considers a simpler idea instead:

N /).r,,,m[;fy\ (LMJr)?aWA) >
fow/tn lDﬂwlmr;i [)7[ 6/5

‘X‘\O

o)
QF“J:OPy C/J 7% /

1. Inabipartite graph G = (U,V,E),where U and V are the two disjoint vertex sets, and E
contains edges only between U and V

2. Consider the vertex v in U that has the maximum degree (i.e., connected to the most vertices
inV)

3. The greedy algorithm will select v and allits neighbors in V
4. However, the optimal solution is to select only the neighbors of v in V (and not v itself)

5. This gives a lower bound on the approximation ratio p > (1 + deg(v)) / deg(v) = 1 +
1/deg(v)

The key observation is that by selecting the highest degree vertex v in U, the greedy algorithm is
making the worst possible choice compared to the optimal solution of just selecting v's neighbors in
V.
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This lower bound holds because:
e Greedy picks v and deg(v) vertices inV, so sizeis 1 + deg(v)
e Optimaljust picks the deg(v) vertices in V that are neighbors of v

So the approximation ratio is at least (1 + deg(v)) / deg(v), which approaches 1 + 1/deg(v) as
deg(v) grows large.

4.2 APPROXIMATION FACTOR OF APPROX VERTEX COVER

The algorithmis:
procedure Approx_Vertex_Cover(G)
V=0
E'=E
while E’ # @:do
Let (u,v) be an arbitrary edge of E'
V' =v'u{uv}
E'=E'\{(v,2), (v,w)}
// remove edges that have u and v as endpoints
return V'
Complexity: O(n +m)
Exercise: show that the approximation factor of Approx_Vertex_Cover is exactly 2.

Solution

o——@ OPT* JMF}W

Vaatax

Consider the algorithm:

- The algorithm starts with an empty set V' (vertex cover set) and the original edge set E'. It
iteratively selects an arbitrary edge (u, v) from E’ and adds both vertices u and v to the vertex
cover set V', It then removes all edges from E' that are incident on either u or v

- The algorithm continues this process until E' becomes empty, meaning all edges have been
covered by the selected vertices in V'. Finally, it returns V' as the approximate vertex cover

The key observation is that for each edge (u, v) selected, at least one of u or v must be presentin the
optimal vertex cover OPT. This is because OPT must cover all edges, and (u, v) is an edge in the
original graph.

Therefore, during each iteration when an edge (u, v) is processed, the algorithm adds at most two
vertices to V', while the optimal vertex cover OPT must contain at least one of these two vertices.
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Consequently, we can establish the following inequality:
[V'| < 2 |OPT|

The bound is tight; ensuring the greedy choice is 2 vertices and the optimal choice is just one vertex,
'l _

=2<2.
|OPT|

we will have that

4.3 APPROX VERTEX COVER EDIT TO SELECT ONLY ONE VERTEX

Solution
/
///)ta h*
Lo -7
~
OpPT = 1
= -1
FLG = -1 > 7"

Consider the star graph, a bipartite graph with one internal node (given n vertices) and n — 1 leaves.
The optimal choice would select one vertex then the greedy selects the leaf nodes. This would imply
removing all edges connected to the intermediate node and, as such, we guarantee to select one
vertex at a time, ensuring p = n — 1. Selecting only one vertex can be really bad unless you trick the
algorithm a bit.

In this structure:

1. The optimal vertex cover (OPT) contains only the central vertex, covering alln — 1 edges. So
OPT = 1.

2. The modified approximation algorithm selects one endpoint vertex per edge. For the star
graph, this means it will select all n-1 leaf vertices.

3. Therefore, the size of the approximate vertex cover produced by the algorithmis |C| = n— 1.
4. Since OPT = 1and|C| = n— 1, the approximationratiop =|C| /OPT=(n—-1)/1 = n—1.

So for the star graph, the approximation ratio p achieved by the modified algorithm is exactly n — 1,
which matches the lower bound claim of p = n — 1 in the image.
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4.4 AprPROX METRIC TSP RETURNING A SOLUTION OF A SPECIFIED COST

Given the algorithm:
procedure Approx — Metric — TSP(G):
V ={vy,v,, .0}
r = v, //root from which Prim is run
T* = Prim(G,r)
<wv;,v;, ..y, = H = PREORDER(T",1)
// lists all the vertices in the tree in an ordered fashion following a preorder walk
return < H',v; = H // basically, close the cycle
Given this analysis:
Let H* denote an optimal tour for the given set of vertices.
Let’s give the intuition behind the algorithm:

1) costofT*is “low” (actually, the lowest)
2) triangle inequality = “shortcuts” do not increase the cost

A

To be more precise, shortcuts in graph theory refer to edges that directly connect two vertices that are
not adjacent in the original graph.

1) Lower bound to the cost of H* (=optimal tour) (for vertex cover: [v*| = |A])

The weight should be: w(H*) > ? [_J* /%\ T' is a spanning tree
/7\ L,L,j '
TI
weights on > 0 w(T*) > w(T") = w(T™)

This is because we obtain a spanning tree by deleting any edge from a tour, and each edge costis
non-negative.

2) Upper bound to the cut of H (the returned solution. We want to prove the following:

w(H) < DXRET < pw(H)

0\ comes from

w(H*) =2 w(T")
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The approximation factor keeps being at most twice, so p = 2:
w(H) < 2w(T*)?

Definition: given a tree, a full preorder chain is a list with repetitions of the vertices of the tree which
identifies the vertices reached from the recursive calls of PREORDER(T, v).

The following is an example, quite easy to see | guess (f.p.c. = “full preorder chain” from now on):

Ex-mv?j :

Jpc: abchdbe e
The key property is the following: given the full preorder chain traverses every edge exactly two times,

we have:
w(f.p.c.) = 2w(T")
This happens because every edge of T* appears twice in a f.p.c.
Unfortunately, the f.p.c is generally not a tour since it visits some vertices more than once.

- Bythe triangle inequality, however, we can delete a visit to any vertex from f.p.c and the cost
does notincrease
a. This ensures we only have traversed vertices twice so to ensure a full visit in all the
tree, correctly applying the Hamiltonian cycle definition
- Byrepeatedly applying this operation, we can remove from f.p.c. all but the first visit to each
vertex (except for the last occurrence of the root)
- Thisis like adding a shortcut between vertices that does not increase the cost

Exercise

Show that the above analysis is tight by giving an example of a graph where Approx_Metric_TSP
returns a solution of cost 2 x H*.

Solution
Consider a complete graph of 6 vertices. We take the edges of 1
weight 1 (blue) and the edges of weight 2. This satisfies the triangle \ :: 7

inequality.
Here, OPT will use only edges of weight 1, as you can see from left \

graph, which has weight n. -
OPT/ \FTPFAB’(”‘“T"‘,C’TSP
Approx_Metric_TSP finds the minimum MST, but there is more than (/2 N

one to consider. Here, the star graph will be represented, with the o~ ?/0
tours of vertices, finding the shortcuts using all the red vertices. j\o

It’s basically a choice of weight 2 over all vertices not considering W(abT) = w(H) —9m—2
the centralvertex,so 2 * (n — 1) = 2n — 2.
’ wH) o
2n-2 2(n-1) wlofr) ot
Over infinity, we have ——= limy,_e — = 2
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4.5 SHOW THE ANALYSIS OF SET COVER IS TIGHT

Given the following analysis:

We’ll show that m < [log,(n)] + 1, where n = |X]|.
OPT <
Property: if (X, F) admits a cover with |F| < k,then VX' € X (X', F) admits a cover with |F| < k.

Idea: try to bound the number of iterations such that the set of remaining elements gets empty.

- UO = X
U; = residual universe after then of the i — th iteration
- |Fl=k »~ o b (cardinality of optimal solution)

This is done limiting the number of loops to execute in such a way the set of elements gets empty as
soon as possible.

Lemma: after the first k iterations, the residual universe is at least halved, that |U | < %

Being greedy, this can be seen as a recursive algorithm selecting a subset then repeating itself on the
residual universe as follows:

= after k * i iterations |Uj,_;| < %(after k iterations, the size of residual universe is the ones of

remaining sets)

= # (number) of necessary iterations [log,(n)] * (k) + 1 ateach iteration |F'| + +

= |F'| < [log,(n)] * k\+ 1

= |F'| < [log,(n)] * I;?*I + 1 (because at every iteration, |F'| is increased by one)
Consider the “+1” here is present to cover the possible last element remaining to cover.
Let’s prove the lemma in a proper way:

U, € X = U, admits a cover size < k allin F (i.e. not yet selected by the algorithm)

(trivial) property: if (X, F) admits a cover with |F| < kthen VX' € X, (X', F) admits a cover with |F| < k
(this happens because of the property above, given after k iterations, the resi Iverse has at

most as many elements as the et selected)
[

LetTy,T,, ..., Ty € F bethose sets, where UT; covers U, (covering all sets — residual universe after k
iterations).

We apply the pigeonhole principle, which generally states that if n items are put into m containers,
with n > m, then at least one container must contain more than one item.

- In otherwords and more precisely for the example and context here: given a set of elements
where there is an order relation, there is always at least one element whose value is greater
than the mean value

There are k subsets and there’s the need to cover elements of cardinality Uy. It is possible and there is

|Ugl

at least one which covers at least a fraction of all elements: 3T s.t. |Uk N ﬂ = o
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We’ll now see that in the first k iterations, V iteration at least k elements get covered:

V1 <i<k,letS; € Fbethe selected subset of the algorithm. This subset has the following property:
1S Ul = |TinU|v1i<j<k

This is true because at each interaction I, the cardinality of the intersection with the residual universe
is at least as big as the cardinality of the T; not selected (each interaction selects the set with biggest

cardinality). This property is valid also for T, thatis: .., | U \ IUI’~I

1S; nU|>|TnU|>|TnUk|>| Ul

= after the first k iterations the algorithm has covered \Z « k= |Uk| elements

Since Uy, is the set of elements not selected by the algorithm after k iterations, it follows that:

|Up| < n— |Ugl
/wn'iuﬁ CaVind

satisfied for |Uj | < g (after the k iterations, the residual universe is at least halved).

Exercise: show that there is an input I = (X, F) on which Approx_Set_Cover achieves an
approximation ratio of 6 (log(n))

(Hint: the algorithm chooses the set that contains the largest n. of uncovered elements, whereas OPT
chooses a set that contains the second largest n. of uncovered elements)

Solution

Consider the following schema, applying exactly what the hint told — we have 30 elements, in which
the optimal choice would be to select both the complete sets of elements, while the algorithm selects
progressively only a fraction of those:

-------

\///\

Ap(}m& S¢t-Gvn =3

K =
’) 4
- Xhasn = 2k*1 _ 2 elements forsome k € N __/

-  Fhas:
a. k pairwise disjoint sets Sj, ... S, with sizes 2,4, ..., 2¥

b. two additional disjoint sets T,), T;
i. each of which contains half of the elements from each S;
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4.6 MARKOV’S LEMMA APPLICATION

Exercise

Assume that:
1) Ap LAS VEGAS, with Ty, (n) = O(f (n)) w.h.p; in particular, Pr (TAn (n) >c=* f(n)) < %
2) Ap has a worst-case deterministic complexity 0(n%),a < d Vn

Show that E [TAn (n)] = o(fF ().

We will apply the following:

Markov’s lemma: let T be a non-negative, bounded (= b € Ns.t.Pr(T > b) = 0), integer, random
variable. ThenVts.t.0 <t < b,

t*Pr(T=t) <E[T]<t+b-t)Pr(T=1)

This basically gives an upper bound on the probability that a non-negative random variable is greater
than or equal to some positive constant (usually you see the first inequality).

Proof

Using the upper bound of the lemma:

E[Tag )] < ¢ f(n) + (n° — ¢ % f () /n

P4
t b-t FA(T#)

Sc*f(n)+%£c*f(n)+1

=0(f(m)

4.7 SHow KARGERIS TIGHT

Exercise

Using the analysis of Karger's algorithm, show that the n° of distinct min-cuts in a graph is at most

_”(”2_1), Also, show that this bound is tight.

Solution

Let €4, Cy, ..., Cj denote the min-cuts of a graph j <?
2
n(n—

We have shown that FULL_CONTRACTION returns a particular C; with probability >

1)’
So, if we denote with 4; the event that C; is returned by FULL_CONTRACTION, we can write:

2
Pr(4;) = m
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Given the probability of the union of this event cannot be greater than 1, this term will not be that high.
Observe that events Ay, 45, ... 4; are disjoint. Then:

]
Pr(4; UA,U..U4)) = z Pr(4,)

=1

By definition, Pr(4; UA, U..U4;) < 1,s0X)_ Pr(4) < 1= < n(nz—l)
z

\_/
> L
M (fhn’l)

This bound is tight: in a cycle of n vertices every pair of edges is a distinct min-cut:

'l

h=y
g I <
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