
1 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

ADVANCED ALGORITHMS: EXERCISES SWISS KNIFE

2 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

1 TABLE OF CONTENTS

2 Graphs .. 3

2.1 Properties of graphs ... 4

2.2 DFS Exercises .. 4

2.3 Uniqueness of MSTs ... 5

2.4 Kruskal Union-Find ... 7

2.5 Dijkstra with Heaps .. 7

2.6 Eulerian Circuit in Linear Time ... 8

3 NP-Hardness ... 10

3.1 Clique is NP-Hard ... 10

3.2 Vertex Cover is NP-Hard ... 11

3.3 More Reductions can be made .. 12

4 Approximation Algorithms .. 14

4.1 Lower Bound for Vertex Cover Greedy Algorithm .. 14

4.2 Approximation Factor of Approx Vertex Cover .. 16

4.3 Approx Vertex Cover edit to select only one vertex ... 17

4.4 2-Approximation Vertex Cover Algorithm Using DFS Errore. Il segnalibro non è definito.

4.5 Approx Metric TSP returning a solution of a specified cost .. 18

4.6 Show the analysis of Set Cover is tight ... 20

4.7 Markov’s Lemma Application .. 22

4.8 Show Karger is tight .. 22

3 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

Disclaimer

This file gathers all the exercises did in class as of 2023-2024 course program. Hope this can be useful
to immediately see the exercises, the categories and can be used as a file to study for the exam

directly.

4 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

2 GRAPHS

2.1 PROPERTIES OF GRAPHS

Let 𝐺 = (𝑉, 𝐸) be a simple, connected graph with 𝑛 vertices and 𝑚 edges. Then:

1) ∑ 𝑑(𝑣) = 2𝑚𝑣∈𝑉
2) 𝑚 ≤ (𝑛

2
)

3) 𝐺 is a tree ⇒ 𝑚 = 𝑛 − 1
4) 𝐺 is connected ⇒ 𝑚 ≥ 𝑛 − 1
5) 𝐺 is acyclic (i.e., is a forest) ⇒ 𝑚 ≤ 𝑛 − 1

Prove the previous properties.

Solution

1) In the summation, every edge is counted exactly twice

2) In a simple graph, there are (𝑛
2

) possible pairs of vertices

3) Fix a root on a vertex (so, consider 𝐺 as rooted tree, thanks to the equivalence between rooted
tree and “free” tree). Then 𝐸 represent father-child relationships, which are 𝑛 − 1 (which
means each non-root node has a unique father)

4) 𝐺 is a tree that may have cycles ⇒ it can only have more edges than a tree
a. Consider connectivity removes edges and keeps the graph connected without cycles,

thanks to 𝑛 − 1 edges

5) 𝐺 is a tree that may not be connected ⇒ it can only have less edges than a tree
a. If it is a tree without cycles, it is a forest, and its maximum edges are 𝑛 − 1

2.2 DFS EXERCISES

1) Given a graph 𝐺 and two vertices 𝑠, 𝑡 determine, if it exists, a path from 𝑠 to 𝑣
2) Given a graph 𝐺 return a cycle (if any)

Solution

• 1st exercise (𝑠 − 𝑡 path)
o ∀𝑣 ∈ 𝑉 add a field 𝐿𝑉[𝑣].𝑝𝑎𝑟𝑒𝑛𝑡
o Modify 𝐷𝐹𝑆(𝐺, 𝑣) s.t. when a 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 (𝑣, 𝑤) is labeled

▪ then 𝐿𝑉[𝑤]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣
o Run 𝐷𝐹𝑆(𝐺, 𝑠). Check if 𝑡 has been visited

▪ NO: then return “No path”
▪ YES: starting from 𝑡, follow the “parent” label, so as to build a path from 𝑡 to 𝑠

o Complexity: 𝑂(𝑚𝑠) where 𝑚𝑠 is the number of edges of 𝑠 connected component

5 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

• 2nd exercise (cycle) → we go back thanks to back edges because they “close” the cycles
o ∀𝑣 ∈ 𝑉 add a field 𝐿𝑉[𝑣]. 𝑝𝑎𝑟𝑒𝑛𝑡 and ∀𝑒 ∈ 𝐸 add a field 𝐿𝐸[𝑒]. 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟
o (𝑣, 𝑤) is a 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 then 𝐿𝑉[𝑤]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣
o (𝑣, 𝑤) is a 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸 then 𝐿𝐸[𝑒]. 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 = 𝑤

▪ then 𝑤 is an ancestor of 𝑣 in the DFS tree
o Run DFS on each connected component
o Check all the edges

▪ as soon as an edge 𝑒 = (𝑣, 𝑤) is found as 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸
▪ and 𝐿𝐸[𝑒]. 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 = 𝑤
▪ then return a cycle adding to 𝑒 all the edges found in the path from 𝑣 to 𝑤
▪ if no 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸 is found, then return “No Cycles” (it would be a tree)

Complexity for both algorithms: 𝜃(𝑛 + 𝑚) → invoked DFS once for each connected component

2.3 UNIQUENESS OF MSTS

Exercise (uniqueness of MSTs):

Show that if the weights of the edges are all distinct then there exists exactly one MST.

(Hint: cut and paste argument – similar to the theorem correctness)

Solution (with details of lesson but also other including Wikipedia and other sources)

Assume there are two MST different from each other, so the contrary and so 𝐴 ≠ 𝐵 ⇒ ∃ an edge in one
but not in the other; since weights are distinct, ∃! with min weight, call it 𝑒1, without loss of generality
(not introducing any artificial assumption), 𝑒1 ∈ 𝐴 and the argument is a cut-and-paste one (this
choice will be unique, considering edge weights are all distinct from each other):

- add 𝑒1 to 𝐵 ⇒ this creates a cycle 𝐶; 𝐴 is (M)ST ⇒ no cycles ⇒ 𝐶 has an edge 𝑒2 ∉ 𝐴
⇒ 𝑤(𝑒2) > 𝑤(𝑒1)

o because 𝑒1 was chosen as the unique lowest-weight edge (only edge with minimum
weight not in the other) among those belonging to exactly one of 𝐴 and 𝐵

o therefore the weight of 𝑒2 must be greater than the weight of 𝑒1
- remove 𝑒2 from 𝐵 ⇒ get a new spanning tree with weight < 𝑤(𝐵) (so, smaller weight):

contradiction, because 𝐵 is an MST!

Two conclusions can be done:

- more generally, if the edge weights are not all distinct then only the (multi-)set of weights in
minimum spanning trees is certain to be unique; it is the same for all minimum spanning trees

- when the edge weights are not all distinct, it's possible for multiple different MSTs to exist

6 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

o however, while the actual arrangement of edges in these MSTs may vary, the set of
weights of the edges across all MSTs will remain the same

- conversely, if weights are not all distinct, generally multiple MSTs can exist

Other exercises

1) Is the converse true? (e.g., are weights necessarily unique for every possible graph and this has
to hold for every graph)

Solution

No: think of 𝐺 as a tree (literally only thing professor will write – lame, I know, I added more).

A connected graph with repeated edge weights and this can still have a unique minimum spanning
tree. Considered the trivial example of 𝐺 being a tree; in this case, there are no cycles, so any
spanning tree will be minimal, hence unique, regardless of repeated edge weights.

In conclusion, we might say:

- Distinct weights guarantee a unique MST
- Repeated weights can have multiple MSTs

o but the set of weights used will always be the same across all of them

2) Show that the second best MST, that is, the spanning tree of second-smallest total weight, is
not necessarily unique (here we look for only one graph)

Solution

There will be a unique MST, but for the second best, according to where the cut will be displaced,
there will definitely be more than one, given the cut can be done on more than two edges at a time.

If you want a complete formal explanation, see the book solution to this exercise here (look for
problem B in the link).

https://viterbi-web.usc.edu/~shanghua/teaching/Spring2010/public_html/files/HW2_Solutions_A.pdf

7 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

2.4 KRUSKAL UNION-FIND

Argue that the complexity of 𝐹𝑖𝑛𝑑(𝑥) (and of 𝑈𝑛𝑖𝑜𝑛(𝑥, 𝑦)) is 𝑂(log(𝑛)).

Solution

Initially, 𝑑𝑒𝑝𝑡ℎ(𝑥) = 0 ∀𝑥. 𝑑𝑒𝑝𝑡ℎ(𝑥) can only increase because of a Union in which the root of the tree
of 𝑥 points to another root (depth increases by 1 by construction). This happens only when the tree of
𝑥 gets merged to a tree of size not smaller (at least as big) ⇒ when the depth of 𝑥 increases, the size of
the tree of 𝑥 at least doubles.

- How many times can this happen?
o ≤ log2 𝑛 times (at most)

▪ therefore the depth of 𝑥 cannot increase more than log2 𝑛 times

So, we have two different algorithms with complexity 𝑂(𝑚 log(𝑛)). 𝑂(𝑚) is still an open problem.

2.5 DIJKSTRA WITH HEAPS

Write an implementation of Dijkstra’s algorithm with heaps.

Solution

procedure 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠) (almost identical to Prim’s implementation with heaps)

𝑋 = {𝑠}

𝐻 = ∅ // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ℎ𝑒𝑎𝑝

𝑘𝑒𝑦(𝑠) = 0 // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑘𝑒𝑦 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥

for each 𝑣 ≠ 𝑠: do // 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 𝑘𝑒𝑦(𝑣) = ∞

for each 𝑣 ∈ 𝑉: do // 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑠𝑖𝑑𝑒 𝑚𝑖𝑛 ℎ𝑒𝑎𝑝

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑣 𝑖𝑛𝑡𝑜 𝐻

while 𝐻 𝑖𝑠 𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦: do // 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝

𝑤∗ = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝐻)

 𝑎𝑑𝑑 𝑤∗ 𝑡𝑜 𝑋

𝑙𝑒𝑛(𝑤∗) = 𝑘𝑒𝑦(𝑤∗)

// 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝

for each 𝑒𝑑𝑔𝑒 (𝑤∗, 𝑦) 𝑠. 𝑡. 𝑦 ∉ 𝑋: do

 𝑑𝑒𝑙𝑒𝑡𝑒 𝑦 𝑓𝑟𝑜𝑚 𝐻

 𝑘𝑒𝑦(𝑦) = min {𝑘𝑒𝑦(𝑦), 𝑙𝑒𝑛(𝑤∗) + 𝑤(𝑣∗, 𝑤∗)}

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑦 𝑖𝑛𝑡𝑜 𝐻

8 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

(This algorithm gives only the length of the path, but it’s not difficult to also insert the actual path
inside of this one)

Complexity:

- considering graph as adjacency list, 𝑛 vertices and 𝑚 edges
- log(𝑛) iterations because of heap usage

Total number of operations: 𝑂((𝑛 + 𝑚) log(𝑛) (there are 𝑂(𝑚 + 𝑛) operations on heaps)

2.6 EULERIAN CIRCUIT IN LINEAR TIME

Problem:

Given an undirected graph, an eulerian circuit is a cycle that traverses all the edges only once.

Show it can be solved in linear time.

Solution

To solve the problem of finding an Eulerian circuit in an undirected graph in linear time, we can use the
following algorithm:

1. Check if the graph is connected and has at most two vertices with odd degrees. If there are
more than two vertices with odd degrees, then an Eulerian circuit cannot exist.

2. If there are exactly two vertices with odd degrees, start the Eulerian circuit at one of them.
Otherwise, start from any vertex.

3. Traverse the graph using the following strategy:

• At each vertex, choose an unvisited edge (if one exists) and traverse it.

• If there are no unvisited edges at the current vertex, backtrack to the previous vertex.

4. If you can traverse all the edges and end up at the starting vertex, then an Eulerian circuit
exists. Otherwise, an Eulerian circuit does not exist.

This algorithm works in linear time because it visits each edge exactly twice (once during the traversal
and once during backtracking) and performs constant-time operations at each vertex. Therefore, the
time complexity is 𝑂(𝑉 + 𝐸), where 𝑉 is the number of vertices and 𝐸 is the number of edges in the
graph.

There is an existing algorithm doing this done by Hierholzer, which showed the sufficient condition in
Euler theorem, which states “a graph is connected if an only if has all nodes of even degree or if it has
exactly two nodes of even degree”. It works for both directed and undirected graphs and works as
follows:

9 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

Preconditions:

- All vertices in the graph must have even degrees

Steps:

- Start at any vertex (each one can be a starting point) and follow a trail of edges until returning
to the starting vertex. This forms a partial circuit

- If the partial circuit covers all edges, the algorithm is complete. Otherwise, select any vertex in
the current circuit that has unused edges and start a new circuit from that vertex, merging it
into the previous circuit

- Repeat step 2 until all edges have been used
a. At some point, we will visit a vertex and there will be no edges to follow
b. Remember that Eulerian Cycle properties, every vertex should have even degrees or

equal in-out degrees
c. If we are stuck the first time it means that we formed a cycle, and the vertex that we are

stuck on is the starting vertex. This means we returned where we started.

- The algorithm terminates when a complete Euler circuit is formed, where each edge is
traversed exactly once, backtracking from the whole stack and holding complete knowledge of
the structure

Hierholzer's algorithm has a linear runtime, making it an efficient method for finding an Euler circuit in
a graph that meets the necessary requirements.

10 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

3 NP-HARDNESS

3.1 CLIQUE IS NP-HARD

- (Maximum) Clique: compute the longest complete subgraph
a. other name for a complete graph (from now on, the problem will be called Clique)
b. below, a useful figure to clearly see the problem

Show that Clique is NP-Hard.

Solution (a nice graphical explanation here)

Decision version:

- Input: < 𝐺 = (𝑉, 𝐸), 𝑘 >
- Output: ∃ in 𝐺 a clique of size 𝑘?

We operate a reduction from Maximum Independent Set (Ham. circuit is not
really related to it; as you can see here, one can use 3SAT in order to show
Clique is NP-complete). Figure here shows Independent Set.

- Intuition
a. clique: vertices with all edges between them
b. maximum independent set: vertices with no edges between them

- Definition

a. given a graph 𝐺 = (𝑉, 𝐸), its edge-complement 𝐺 = (𝑉, 𝐸) has the same vertex 𝑉 and

an edge set 𝐸 such that (𝑢, 𝑣) ∈ 𝐸 ⇔ (𝑢, 𝑣) ∉ 𝐸 (so, no common edges)

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/clique_to_independentSet.html
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1108.pdf

11 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

- Observation

a. a set of vertices 𝑆 is independent in 𝐺 ⇔ 𝑆 is a clique in 𝐺 ⇒ the largest independent

set in 𝐺 has the same size as the largest clique in 𝐺

To make it super complete, let’s draw the schema of what we are doing – takes 𝑂(𝑛2) time, givemn the
constant work needed to traverse all edges and vertices:

3.2 VERTEX COVER IS NP-HARD

- (Minimum) Vertex Cover: compute the smallest vertex in a given graph
a. From now on, only called Vertex Cover

Show that Vertex Cover is NP-Hard.

Solution (once again, a nice graphical explanation of this one here)

Decision version:

- Input: < 𝐺 = (𝑉, 𝐸), 𝑘 >
- Output: ∃ in 𝐺 a vertex cover of size 𝑘?

We operate a reduction from Maximum Independent Set (once again, this is the most similar problem
to the one we are proving)

- Observation
a. a set of vertices 𝑆 is independent in 𝐺 ⇔ 𝑉 ∖ 𝑆 is a vertex cover of 𝐺

i. in blue there is an independent set (actually the biggest one)
ii. the other ones are the vertex cover

⇒ the longest independent set in 𝐺 has size 𝑛 − 𝑘, where 𝑘 is the size of the smallest
vertex cover of 𝐺

Independent set:

- Input: < 𝐺 = (𝑉, 𝐸), 𝑛 − 𝑘 >
- Output: ∃ in 𝐺 an independent set of size 𝑛 − 𝑘?

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/independentSet_to_vertexCover.html

12 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

Once again, let’s represent this in a complete way:

3.3 MORE REDUCTIONS CAN BE MADE

Exercise

- Show that:
a. 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡
b. 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟

⇒ these 3 problems are equivalent.

Solution (official = shorter)

- “same” as 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟

- we can consider the following figure for this one
a. consider a clique of size 4 in the middle (left)
b. if you take the complement of this one (right)

- 𝐺 has a clique of size 𝑘 ⇔ 𝐺 has a vertex over of size 𝑛 − 𝑘
a. proof: see the book (§ - p. 1106 of 4th edition – theorem 34.12)

Solution (longer and better explained)

a. Suppose that we have an efficient algorithm for solving Independent Set, it can simply be used
to decide whether 𝐺 has a vertex cover of size at most 𝑘, by asking it to determine whether G
has an independent set of size at least 𝑛 – 𝑘

Given an instance of the Vertex Cover problem, consisting of a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
representing the size, we construct an instance of the Independent Set problem as follows:

1. Let 𝐺′ = 𝐺 (i.e., the graph for the Independent Set instance is the same as the original graph
G).

2. Let 𝑘′ = |𝑉| − 𝑘 (i.e., the target size of the independent set is the number of vertices in 𝐺 minus
the size of the vertex cover 𝑘).

To show that this reduction is correct, we need to prove the following:

13 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

1. If 𝐺 has a vertex cover of size ≤ 𝑘, then 𝐺′ has an independent set of size ≥ 𝑘′.

2. If 𝐺′ has an independent set of size ≥ 𝑘′, then G has a vertex cover of size ≤ 𝑘.

Let’s prove both (1) and (2):

- Suppose 𝐶 is a vertex cover of size ≤ 𝑘 in 𝐺. Then, the set 𝑉 \ 𝐶 is an independent set in
𝐺′ (since 𝐶 covers all the edges, no two vertices in 𝑉 \ 𝐶 can be adjacent). Furthermore,
|𝑉 \ 𝐶| ≥ |𝑉| − 𝑘 = 𝑘′

- Suppose 𝑆 is an independent set of size ≥ 𝑘′ in 𝐺′. Then, the set 𝑉 \ 𝑆 is a vertex cover in 𝐺
(since 𝑆 is independent, every edge must have at least one endpoint in 𝑉 \ 𝑆). Furthermore,
|𝑉 \ 𝑆| ≤ |𝑉| − 𝑘′ = 𝑘.

b. To show that 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟, we need to provide a polynomial-time reduction from
the Clique problem to the Vertex Cover problem. Here's one way to construct the reduction:

Given an instance of the Clique problem, consisting of a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘, we
construct an instance of the Vertex Cover problem as follows:

1. Let 𝐺′ = 𝐺 (i.e., the graph for the Vertex Cover instance is the same as the original graph G).

2. Let 𝑘′ = |𝑉| − 𝑘 (i.e., the target size of the vertex cover is the number of vertices in 𝐺 minus the
size of the clique 𝑘).

To show that this reduction is correct, we need to prove the following:

1. If 𝐺 has a clique of size ≥ 𝑘, then 𝐺′ has a vertex cover of size ≤ 𝑘′.

2. If 𝐺′ has a vertex cover of size ≤ 𝑘′, then 𝐺 has a clique of size ≥ 𝑘.

Proof of (1): Suppose 𝐶 is a clique of size ≥ 𝑘 in 𝐺. Then, the set 𝑉 \ 𝐶 is a vertex cover in 𝐺′ (since 𝐶 is
a clique, every edge must have at least one endpoint in 𝑉 \ 𝐶). Furthermore, |𝑉 \ 𝐶| ≤ |𝑉| − 𝑘 = 𝑘′.

Proof of (2): Suppose 𝑆 is a vertex cover of size ≤ 𝑘′ in 𝐺′. Then, the set 𝑉 \ 𝑆 is a clique in 𝐺 (since 𝑆 is
a vertex cover, every edge must have both endpoints in 𝑉 \ 𝑆, which means 𝑉 \ 𝑆 is a clique).
Furthermore, |𝑉 \ 𝑆| ≥ |𝑉| − 𝑘′ = 𝑘.

14 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

4 APPROXIMATION ALGORITHMS

4.1 LOWER BOUND FOR VERTEX COVER GREEDY ALGORITHM

Very first algorithm you can think of? Use a greedy approach:

- select the vertex for the highest degree
- “remove” the touched edges
- repeat

Exercise: show a LB on 𝜌(𝑛) for this algorithm – the higher, the better (log (𝑛) is difficult)

(Hint: try to prove the best you can – it should be a constant factor)

Solution

One possible idea is the following:

- take a round of vertices
- consider levels of vertices adding more

We call this problem: “degree-based greedy approximation for vertex cover”. Consider the following:

This image demonstrates a general idea for constructing a "bad" input instance to show a lower bound
on the approximation ratio. The approach is to create a graph with multiple levels, where each level
has more vertices than the previous level, but with fewer edges connecting to the next level.

The reasoning goes like this:

• Start with a single vertex (labeled "Greedy" in the image)
• At the next level, add a few vertices that are all connected to the first vertex
• At the next level, add more vertices that are only connected to the previous level vertices
• Continue adding more and more vertices at each level, with fewer connections to the previous

level

The idea is that the greedy algorithm will pick all the vertices in the first level, then all the vertices in
the second level, and so on, resulting in a large vertex cover. However, the optimal vertex cover would
be to pick the intermediate level vertices, which can cover all the edges with fewer vertices.

15 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

The greedy algorithm, by design, will select the vertex with the highest degree at each step. This
means:

• It will select the single vertex at the first level.

• Then, it will select all 𝑛
3

+ 2 vertices at the second level (since they have the highest degree at

that point).

• Next, it will select all 𝑛
3

+ 2 vertices at the third level (since they are now the highest degree

vertices remaining).

Therefore, the total size of the vertex cover produced by the greedy algorithm is: 1 + (
𝑛

3
 + 2) +

 (
𝑛

3
+ 2) =

2𝑛

3
+ 5

However, the optimal vertex cover for this graph is to select the 𝑛
3

+ 2 vertices at the second level. This

covers all edges in the graph using only 𝑛
3

+ 2 vertices.

By comparing the greedy solution size (2𝑛

3
+ 5) to the optimal solution size (𝑛

3
+ 2), we get an

approximation ratio of:

𝜌 = (
2𝑛

3
+ 5) / (

𝑛

3
+ 2) ≈ 2 (for large values of 𝑛)

The following considers a simpler idea instead:

1. In a bipartite graph 𝐺 = (𝑈, 𝑉, 𝐸), where 𝑈 and 𝑉 are the two disjoint vertex sets, and 𝐸

contains edges only between 𝑈 and 𝑉

2. Consider the vertex 𝑣 in 𝑈 that has the maximum degree (i.e., connected to the most vertices
in V)

3. The greedy algorithm will select 𝑣 and all its neighbors in 𝑉

4. However, the optimal solution is to select only the neighbors of 𝑣 in 𝑉 (and not 𝑣 itself)

5. This gives a lower bound on the approximation ratio 𝜌 ≥ (1 + 𝑑𝑒𝑔(𝑣)) / 𝑑𝑒𝑔(𝑣) = 1 +

1/𝑑𝑒𝑔(𝑣)

The key observation is that by selecting the highest degree vertex 𝑣 in 𝑈, the greedy algorithm is
making the worst possible choice compared to the optimal solution of just selecting 𝑣's neighbors in
𝑉.

16 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

This lower bound holds because:

• Greedy picks 𝑣 and 𝑑𝑒𝑔(𝑣) vertices in 𝑉, so size is 1 + 𝑑𝑒𝑔(𝑣)

• Optimal just picks the 𝑑𝑒𝑔(𝑣) vertices in 𝑉 that are neighbors of 𝑣

So the approximation ratio is at least (1 + 𝑑𝑒𝑔(𝑣)) / 𝑑𝑒𝑔(𝑣), which approaches 1 + 1/𝑑𝑒𝑔(𝑣) as
𝑑𝑒𝑔(𝑣) grows large.

4.2 APPROXIMATION FACTOR OF APPROX VERTEX COVER

The algorithm is:

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺)

 𝑉′ = ∅

𝐸′ = 𝐸

while E′ ≠ ∅: do

 𝐿𝑒𝑡 (𝑢, 𝑣) 𝑏𝑒 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐸′

 𝑉′ = 𝑉′ ∪ {𝑢, 𝑣}

 𝐸′ = 𝐸′ ∖ {(𝑢, 𝑧), (𝑣, 𝑤)}

 // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑠 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑉′

Complexity: 𝑂(𝑛 + 𝑚)

Exercise: show that the approximation factor of 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 is exactly 2.

Solution

Consider the algorithm:

- The algorithm starts with an empty set 𝑉′ (vertex cover set) and the original edge set 𝐸′. It
iteratively selects an arbitrary edge (𝑢, 𝑣) from 𝐸′ and adds both vertices 𝑢 and 𝑣 to the vertex
cover set 𝑉′. It then removes all edges from 𝐸′ that are incident on either 𝑢 or 𝑣

- The algorithm continues this process until 𝐸′ becomes empty, meaning all edges have been
covered by the selected vertices in 𝑉′. Finally, it returns 𝑉′ as the approximate vertex cover

The key observation is that for each edge (𝑢, 𝑣) selected, at least one of 𝑢 or 𝑣 must be present in the
optimal vertex cover 𝑂𝑃𝑇. This is because 𝑂𝑃𝑇 must cover all edges, and (𝑢, 𝑣) is an edge in the
original graph.

Therefore, during each iteration when an edge (𝑢, 𝑣) is processed, the algorithm adds at most two
vertices to V', while the optimal vertex cover 𝑂𝑃𝑇 must contain at least one of these two vertices.

17 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

Consequently, we can establish the following inequality:

|𝑉′| ≤ 2 ∗ |𝑂𝑃𝑇|

The bound is tight; ensuring the greedy choice is 2 vertices and the optimal choice is just one vertex,

we will have that |𝑉′|

|𝑂𝑃𝑇|
= 2 ≤ 2.

4.3 APPROX VERTEX COVER EDIT TO SELECT ONLY ONE VERTEX

Solution

Consider the star graph, a bipartite graph with one internal node (given 𝑛 vertices) and 𝑛 − 1 leaves.
The optimal choice would select one vertex then the greedy selects the leaf nodes. This would imply
removing all edges connected to the intermediate node and, as such, we guarantee to select one
vertex at a time, ensuring 𝜌 ≥ 𝑛 − 1. Selecting only one vertex can be really bad unless you trick the
algorithm a bit.

In this structure:

1. The optimal vertex cover (𝑂𝑃𝑇) contains only the central vertex, covering all 𝑛 − 1 edges. So
𝑂𝑃𝑇 = 1.

2. The modified approximation algorithm selects one endpoint vertex per edge. For the star
graph, this means it will select all n-1 leaf vertices.

3. Therefore, the size of the approximate vertex cover produced by the algorithm is |𝐶| = 𝑛 − 1.

4. Since 𝑂𝑃𝑇 = 1 and |𝐶| = 𝑛 − 1, the approximation ratio 𝜌 = |𝐶| / 𝑂𝑃𝑇 = (𝑛 − 1) / 1 = 𝑛 − 1.

So for the star graph, the approximation ratio 𝜌 achieved by the modified algorithm is exactly 𝑛 − 1,
which matches the lower bound claim of 𝜌 ≥ 𝑛 − 1 in the image.

18 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

4.4 APPROX METRIC TSP RETURNING A SOLUTION OF A SPECIFIED COST

Given the algorithm:

procedure 𝐴𝑝𝑝𝑟𝑜𝑥 − 𝑀𝑒𝑡𝑟𝑖𝑐 − 𝑇𝑆𝑃(𝐺):

 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}

 𝑟 = 𝑣1 //𝑟𝑜𝑜𝑡 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑖𝑚 𝑖𝑠 𝑟𝑢𝑛

 𝑇∗ = 𝑃𝑟𝑖𝑚(𝐺, 𝑟)

 < 𝑣𝑖1
, 𝑣𝑖2

, … 𝑣𝑖𝑛
≥ 𝐻′ = 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇∗, 𝑟)

// 𝑙𝑖𝑠𝑡𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑖𝑛 𝑎𝑛 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑓𝑎𝑠ℎ𝑖𝑜𝑛 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑎 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑤𝑎𝑙𝑘

 return < 𝐻′, 𝑣𝑖1
≥ 𝐻 // 𝑏𝑎𝑠𝑖𝑐𝑎𝑙𝑙𝑦, 𝑐𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒

Given this analysis:

Let 𝐻∗ denote an optimal tour for the given set of vertices.

Let’s give the intuition behind the algorithm:

1) cost of 𝑇∗ is “low” (actually, the lowest)
2) triangle inequality ⇒ “shortcuts” do not increase the cost

To be more precise, shortcuts in graph theory refer to edges that directly connect two vertices that are
not adjacent in the original graph.

1) Lower bound to the cost of 𝐻∗ (=optimal tour) (for vertex cover: |𝑣∗| ≥ |𝐴|)

The weight should be: 𝑤(𝐻∗) ≥ ?

 𝑤(𝑇∗)

This is because we obtain a spanning tree by deleting any edge from a tour, and each edge cost is
non-negative.

2) Upper bound to the cut of 𝐻 (the returned solution. We want to prove the following:

𝑤(𝐻) ≤ 𝜌𝑤(𝑇∗) ≤ 𝜌𝑤(𝐻∗)

𝑤(𝐻∗) ≥ 𝑤(𝑇∗)

weights on ≥ 0

𝑇′ is a spanning tree

⇓

𝑤(𝑇′) ≥ 𝑤(𝑇∗)

comes from

19 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

The approximation factor keeps being at most twice, so 𝜌 = 2:

𝑤(𝐻) ≤ 2𝑤(𝑇∗)?

Definition: given a tree, a full preorder chain is a list with repetitions of the vertices of the tree which
identifies the vertices reached from the recursive calls of 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇, 𝑣).

The following is an example, quite easy to see I guess (f.p.c. = “full preorder chain” from now on):

The key property is the following: given the full preorder chain traverses every edge exactly two times,
we have:

𝑤(𝑓. 𝑝. 𝑐.) = 2𝑤(𝑇∗)

This happens because every edge of 𝑇∗ appears twice in a f.p.c.

Unfortunately, the f.p.c is generally not a tour since it visits some vertices more than once.

- By the triangle inequality, however, we can delete a visit to any vertex from f.p.c and the cost
does not increase

a. This ensures we only have traversed vertices twice so to ensure a full visit in all the
tree, correctly applying the Hamiltonian cycle definition

- By repeatedly applying this operation, we can remove from f.p.c. all but the first visit to each
vertex (except for the last occurrence of the root)

- This is like adding a shortcut between vertices that does not increase the cost

Exercise

Show that the above analysis is tight by giving an example of a graph where 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃
returns a solution of cost 2 ∗ 𝐻∗.

Solution

Consider a complete graph of 6 vertices. We take the edges of
weight 1 (blue) and the edges of weight 2. This satisfies the triangle

inequality.

Here, 𝑂𝑃𝑇 will use only edges of weight 1, as you can see from left
graph, which has weight 𝑛.

𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 finds the minimum MST, but there is more than
one to consider. Here, the star graph will be represented, with the

tours of vertices, finding the shortcuts using all the red vertices.

It’s basically a choice of weight 2 over all vertices not considering
the central vertex, so 2 ∗ (𝑛 − 1) = 2𝑛 − 2.

Over infinity, we have 2𝑛−2

𝑛
= 𝑙𝑖𝑚𝑛→∞

2(𝑛−1)

𝑛
= 2

20 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

4.5 SHOW THE ANALYSIS OF SET COVER IS TIGHT

Given the following analysis:

We’ll show that |𝐹
′|

|𝐹∗|
≤ ⌈log2(𝑛)⌉ + 1, where 𝑛 = |𝑋|.

Property: if (𝑋, 𝐹) admits a cover with |𝐹| ≤ 𝑘, then ∀𝑋′ ⊆ 𝑋 (𝑋′, 𝐹) admits a cover with |𝐹| ≤ 𝑘.

Idea: try to bound the number of iterations such that the set of remaining elements gets empty.

- 𝑈0 = 𝑋
- 𝑈𝑖 = residual universe after then of the 𝑖 − 𝑡ℎ iteration
- |𝐹∗| = 𝑘 (cardinality of optimal solution)

This is done limiting the number of loops to execute in such a way the set of elements gets empty as
soon as possible.

Lemma: after the first 𝑘 iterations, the residual universe is at least halved, that |𝑈𝑘| ≤
𝑛

2

Being greedy, this can be seen as a recursive algorithm selecting a subset then repeating itself on the
residual universe as follows:

⇒ after 𝑘 ∗ 𝑖 iterations |𝑈𝑘−𝑖| ≤
𝑛

2𝑖 (after 𝑘 iterations, the size of residual universe is the ones of

remaining sets)

⇒ # (number) of necessary iterations ⌈log2(𝑛)⌉ ∗ (𝑘) + 1 at each iteration |𝐹′| + +

⇒ |𝐹′| ≤ ⌈log2(𝑛)⌉ ∗ 𝑘 + 1

⇒ |𝐹′| ≤ ⌈log2(𝑛)⌉ ∗ |𝐹∗| + 1 (because at every iteration, |𝐹′| is increased by one)

Consider the “+1” here is present to cover the possible last element remaining to cover.

Let’s prove the lemma in a proper way:

𝑈𝑘 ⊆ 𝑋 ⇒ 𝑈𝑘 admits a cover size ≤ 𝑘 all in 𝐹 (i.e. not yet selected by the algorithm)

(trivial) property: if (𝑋, 𝐹) admits a cover with |𝐹| ≤ 𝑘 then ∀𝑋′ ⊆ 𝑋, (𝑋′, 𝐹) admits a cover with |𝐹| ≤ 𝑘
(this happens because of the property above, given after 𝑘 iterations, the residual universe has at
most as many elements as the sets not yet selected)

Let 𝑇1, 𝑇2, … , 𝑇𝑘 ∈ 𝐹 be those sets, where ⋃𝑇𝑖 covers 𝑈𝑘 (covering all sets – residual universe after 𝑘
iterations).

We apply the pigeonhole principle, which generally states that if 𝑛 items are put into 𝑚 containers,
with 𝑛 > 𝑚, then at least one container must contain more than one item.

- In other words and more precisely for the example and context here: given a set of elements
where there is an order relation, there is always at least one element whose value is greater
than the mean value

There are 𝑘 subsets and there’s the need to cover elements of cardinality 𝑈𝑘. It is possible and there is

at least one which covers at least a fraction of all elements: ∃𝑇 s.t. |𝑈𝑘 ∩ 𝑇| ≥
|𝑈𝑘|

𝑘

21 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

We’ll now see that in the first 𝑘 iterations, ∀ iteration at least |𝑈𝑘|

𝑘
 elements get covered:

∀1 ≤ 𝑖 ≤ 𝑘, let 𝑆𝑖 ∈ 𝐹 be the selected subset of the algorithm. This subset has the following property:

|𝑆𝑖 ∩ 𝑈𝑖| ≥ |𝑇𝑗 ∩ 𝑈𝑖| ∀1 ≤ 𝑗 ≤ 𝑘

This is true because at each interaction 𝐼, the cardinality of the intersection with the residual universe
is at least as big as the cardinality of the 𝑇𝑗 not selected (each interaction selects the set with biggest

cardinality). This property is valid also for 𝑇 , that is:

|𝑆𝑖 ∩ 𝑈𝑖| ≥ |𝑇 ∩ 𝑈𝑖| ≥ |𝑇 ∩ 𝑈𝑘| ≥
|𝑈𝑘|

𝑘

⇒ after the first 𝑘 iterations the algorithm has covered |𝑈𝑘|

𝑘
∗ 𝑘 = |𝑈𝑘| elements

Since 𝑈𝑘 is the set of elements not selected by the algorithm after 𝑘 iterations, it follows that:

|𝑈𝑘| ≤ 𝑛 − |𝑈𝑘|

satisfied for |𝑈𝑘| ≤
𝑛

2
 (after the 𝑘 iterations, the residual universe is at least halved).

Exercise: show that there is an input 𝐼 = (𝑋, 𝐹) on which 𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟 achieves an
approximation ratio of 𝜃(log(𝑛))

(Hint: the algorithm chooses the set that contains the largest n. of uncovered elements, whereas 𝑂𝑃𝑇
chooses a set that contains the second largest n. of uncovered elements)

Solution

Consider the following schema, applying exactly what the hint told – we have 30 elements, in which
the optimal choice would be to select both the complete sets of elements, while the algorithm selects
progressively only a fraction of those:

- 𝑋 has 𝑛 = 2𝑘+1 − 2 elements for some 𝑘 ∈ 𝑁

- 𝐹 has:
a. 𝑘 pairwise disjoint sets 𝑆1, … 𝑆𝑘 with sizes 2, 4, … , 2𝑘
b. two additional disjoint sets 𝑇0, 𝑇1

i. each of which contains half of the elements from each 𝑆𝑖

22 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

4.6 MARKOV’S LEMMA APPLICATION

Exercise

Assume that:

1) 𝐴Π LAS VEGAS, with 𝑇𝐴Π
(𝑛) = 𝑂(𝑓(𝑛)) w.h.p; in particular, Pr (𝑇𝐴Π

(𝑛) > 𝑐 ∗ 𝑓(𝑛)) ≤
1

𝑛𝑑

2) 𝐴Π has a worst-case deterministic complexity 𝑂(𝑛𝑎), 𝑎 ≤ 𝑑 ∀𝑛

Show that 𝐸[𝑇𝐴Π
(𝑛)] = 𝑂(𝑓(𝑛)).

We will apply the following:

Markov’s lemma: let 𝑇 be a non-negative, bounded (= 𝑏 ∈ ℕ 𝑠. 𝑡. Pr(𝑇 > 𝑏) = 0), integer, random
variable. Then ∀𝑡 s.t. 0 ≤ 𝑡 ≤ 𝑏,

𝑡 ∗ Pr(𝑇 ≥ 𝑡) ≤ 𝐸[𝑇] ≤ 𝑡 + (𝑏 − 𝑡)Pr (𝑇 ≥ 𝑡)

This basically gives an upper bound on the probability that a non-negative random variable is greater
than or equal to some positive constant (usually you see the first inequality).

Proof

Using the upper bound of the lemma:

𝐸[𝑇𝐴Π
(𝑛)] ≤ 𝑐 ∗ 𝑓(𝑛) + (𝑛𝑎 − 𝑐 ∗ 𝑓(𝑛))/𝑛𝑑

≤ 𝑐 ∗ 𝑓(𝑛) +
𝑛𝑎

𝑛𝑑
≤ 𝑐 ∗ 𝑓(𝑛) + 1

= 𝑂(𝑓(𝑛))

4.7 SHOW KARGER IS TIGHT

Exercise

Using the analysis of Karger's algorithm, show that the n° of distinct min-cuts in a graph is at most
𝑛(𝑛−1)

2
. Also, show that this bound is tight.

Solution

Let 𝐶1, 𝐶2, … , 𝐶𝑗 denote the min-cuts of a graph 𝑗 ≤ ?

We have shown that 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 returns a particular 𝐶𝑖 with probability ≥ 2

𝑛(𝑛−1)
.

So, if we denote with 𝐴𝑖 the event that 𝐶𝑖 is returned by 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁, we can write:

Pr(𝐴𝑖) ≥
2

𝑛(𝑛 − 1)

23 Advanced Algorithms Exercises Swiss Knife

Written by Gabriel R.

Given the probability of the union of this event cannot be greater than 1, this term will not be that high.
Observe that events 𝐴1, 𝐴2, … 𝐴𝑗 are disjoint. Then:

Pr(𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑗) = ∑ Pr(𝐴𝑖)

𝑗

𝑖=1

By definition, Pr(𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑗) ≤ 1, so ∑ Pr(𝐴𝑖) ≤ 1 ⇒ 𝑗 ≤
𝑛(𝑛−1)

2

𝑗
𝑖=1

This bound is tight: in a cycle of 𝑛 vertices every pair of edges is a distinct min-cut:

	2 Graphs
	2.1 Properties of graphs
	2.2 DFS Exercises
	2.3 Uniqueness of MSTs
	2.4 Kruskal Union-Find
	2.5 Dijkstra with Heaps
	2.6 Eulerian Circuit in Linear Time

	3 NP-Hardness
	3.1 Clique is NP-Hard
	3.2 Vertex Cover is NP-Hard
	3.3 More Reductions can be made

	4 Approximation Algorithms
	4.1 Lower Bound for Vertex Cover Greedy Algorithm
	4.2 Approximation Factor of Approx Vertex Cover
	4.3 Approx Vertex Cover edit to select only one vertex
	4.4 Approx Metric TSP returning a solution of a specified cost
	4.5 Show the analysis of Set Cover is tight
	4.6 Markov’s Lemma Application
	4.7 Show Karger is tight

